106 research outputs found

    ECG-derived respiratory rate in atrial fibrillation

    Get PDF
    Objective: The present study addresses the problem of estimating the respiratory rate from the morphological ECG variations in the presence of atrial fibrillatory waves (f-waves). The significance of performing f-wave suppression before respiratory rate estimation is investigated. Methods: The performance of a novel approach to ECG-derived respiration, named “slope range” (SR) and designed particularly for operation in atrial fibrillation (AF), is compared to that of two well-known methods based on either R-wave angle (RA) or QRS loop rotation angle (LA). A novel rule is proposed for spectral peak selection in respiratory rate estimation. The suppression of f-waves is accomplished using signal- and noise-dependent QRS weighted averaging. The performance evaluation embraces real as well as simulated ECG signals acquired from patients with persistent AF; the estimation error of the respiratory rate is determined for both types of signals. Results: Using real ECG signals and reference respiratory signals, rate estimation without f-wave suppression resulted in a median error of 0.015±0.021 Hz and 0.019±0.025 Hz for SR and RA, respectively, whereas LA with f-wave suppression resulted in 0.034±0.039 Hz. Using simulated signals, the results also demonstrate that f-wave suppression is superfluous for SR and RA, whereas it is essential for LA. Conclusion: The results show that SR offers the best performance as well as computational simplicity since f-wave suppression is not needed. Significance: The respiratory rate can be robustly estimated from the ECG in the presence of AF

    Comparison of different algorithms in laboratory diagnosis of alpha1-antitrypsin deficiency.

    Get PDF
    Abstract Objectives Alpha1-antitrypsin deficiency (AATD) is an inherited condition that predisposes individuals to an increased risk of developing lung and liver disease. Even though AATD is one of the most widespread inherited diseases in Caucasian populations, only a minority of affected individuals has been detected. Whereas methods have been validated for AATD testing, there is no universally-established algorithm for the detection and diagnosis of the disorder. In order to compare different methods for diagnosing AATD, we carried out a systematic review of the literature on AATD diagnostic algorithms. Methods Complete biochemical and molecular analyses of 5,352 samples processed in our laboratory were retrospectively studied using each of the selected algorithms. Results When applying the diagnostic algorithms to the same samples, the frequency of False Negatives varied from 1.94 to 12.9%, the frequency of True Negatives was 62.91% for each algorithm and the frequency of True Positives ranged from 24.19 to 35.15%. We, therefore, highlighted some differences among Negative Predictive Values, ranging from 0.83 to 0.97. Accordingly, the sensitivity of each algorithm ranged between 0.61 and 0.95. We also postulated 1.108 g/L as optimal AAT cut-off value, in absence of inflammatory status, which points to the possible presence of genetic AATD. Conclusions The choice of the diagnostic algorithm has a significant impact on the correct diagnosis of AATD, which is essential for appropriate treatment and medical care. The fairly large number of possible false negative diagnoses revealed by the present paper should also warn clinicians of negative results in patients with clinically-suspected AATD

    Non-invasive evaluation of the effect of metoprolol on the atrioventricular node during permanent atrial fibrillation.

    Get PDF
    During atrial fibrillation (AF), conventional electrophysiological techniques for assessment of refractory period or conduction velocity of the atrioventricular (AV) node cannot be used. We aimed at evaluating changes in AV nodal properties during administration of metoprolol from electrocardiogram data, and to support our findings with simulated data based on results from an electrophysiological study

    Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance

    Get PDF
    Purpose To evaluate stability and machine learning-based classification performance of radiomic features of spine bone tumors using diffusion- and T2-weighted magnetic resonance imaging (MRI). Material and methods This retrospective study included 101 patients with histology-proven spine bone tumor (22 benign; 38 primary malignant; 41 metastatic). All tumor volumes were manually segmented on morphologic T2-weighted sequences. The same region of interest (ROI) was used to perform radiomic analysis on ADC map. A total of 1702 radiomic features was considered. Feature stability was assessed through small geometrical transformations of the ROIs mimicking multiple manual delineations. Intraclass correlation coefficient (ICC) quantified feature stability. Feature selection consisted of stability-based (ICC > 0.75) and significance-based selections (ranking features by decreasing Mann-Whitney p-value). Class balancing was performed to oversample the minority (i.e., benign) class. Selected features were used to train and test a support vector machine (SVM) to discriminate benign from malignant spine tumors using tenfold cross-validation. Results A total of 76.4% radiomic features were stable. The quality metrics for the SVM were evaluated as a function of the number of selected features. The radiomic model with the best performance and the lowest number of features for classifying tumor types included 8 features. The metrics were 78% sensitivity, 68% specificity, 76% accuracy and AUC 0.78. Conclusion SVM classifiers based on radiomic features extracted from T2- and diffusion-weighted imaging with ADC map are promising for classification of spine bone tumors. Radiomic features of spine bone tumors show good reproducibility rates
    • …
    corecore